

An Update of Induced Seismicity Research Results and their Regulatory Implications

Honn Kao

Geological Survey of Canada, Natural Resources Canada

September 20, 2022, at CAPP Induced Seismicity Meeting

Acknowledgements

- Team members: Ali Babaie Mahani, Ramin Dokht, Dawei Gao, Chet Goerzen, Adebayo Ojo, Fengzhou Tan, Ryan Visser, Bei Wang, Hongyu Yu, Jianlong Yuan.
- Admin and general supports from the *Induced Seismicity Research Project, Environmental Geoscience Program of NRCan,* and *U. of Victoria*.
- Financial and logistic supports from Geoscience BC and BCOGC
- Collaborations with BCOGC, McGill U., Ruhr-Universität Bochum, U. of Calgary, and U. of Alberta.
- Fieldwork supports from CAPP members.

Outlines

- New methods for improved earthquake location and depth → Comprehensive IIE catalogues
- Source characteristics of IIE in western Canada
 - Case study 1: Long-term WD-induced Musreau Lake sequence
 - Case study 2: Revisit of the 2015 HF-induced sequence
- Controlling factors of Montney IIE seismogenesis

Combining Deep Learning and Source Scanning

Fast, Automatic, and Accurate Location for Small Seismic Events

Dokht et al. (2018, SRL); Dokht et al. (2022, BSSA)

Fast, Automatic, and Accurate

Canada

Natural Resources Ressources naturelles Canada Canada

JGR Solid Earth

RESEARCH ARTICLE

10.1029/2018JB017050

Key Points:

 We take a cocktail approach combining merits of three different techniques to delineate complex spatiotemporal distribution of seismicity

 This new method, named Seismicity-Scanning based on

Seismicity-Scanning Based on Navigated Automatic Phase-Picking

Fengzhou Tan^{1,2}, Honn Kao^{1,2}, Edwin Nissen¹, and David Eaton³

¹School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, ²Geological Survey of Canada, Pacific Geoscience Centre, Sidney, British Columbia, Canada, ³Department of Geoscience, University of Calgary, Calgary, Alberta, Canada

S-SNAP: automatic location method for events clustered in both time and space.

JGR Solid Earth

RESEARCH ARTICLE

10.1029/2020JB019430

Key Points:

- We propose an innovative method that systematically scans seismograms recorded at local and/or regional distances to determine the precise source depth
- This new method, named " Depth-Scanning Algorithm," is designed specifically to be free from human intervention

Depth-Scanning Algorithm: Accurate, Automatic, and Efficient Determination of Focal Depths for Local and Regional Earthquakes

Jianlong Yuan^{1,2,3} (D), Honn Kao^{2,4} (D), and Jiashun Yu^{1,3} (D)

¹State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology), Chengdu, Sichuan, China, ²Pacific Geoscience Centre, Geological Survey of Canada, Sidney, British Columbia, Canada, ³College of Geophysics, Chengdu University of Technology, Chengdu, Sichuan, China, ⁴School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada DSA: accurately determine earthquake depths with poor station coverage.

JGR Solid Earth

RESEARCH ARTICLE 10.1029/2020JB019714

Key Points:

- Selecting a proper template window length and an optimal filter is of great importance in optimizing the match-filtering method
- High cross-correlation coefficients obtained by conventional match-filtering do not necessarily

Optimization of the Match-Filtering Method for Robust Repeating Earthquake Detection: The Multisegment Cross-Correlation Approach

Dawei Gao^{1,2} i and Honn Kao^{1,2}

¹School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, ²Pacific Geoscience Centre, Geological Survey of Canada, Sydney, British Columbia, Canada MFMC: match-filtering with multisegment cross-correlation to detect repeating earthquakes.

Improved Seismic Monitoring of IIE in Western Canada

Seismicity and seismic network in 2006

Natural Resources

ources Ressources naturelles Canada

Canada

Regional and local seismic networks in 2022

S3

1 4 5

21

35

35

46

58

66

75

84

Comprehensive IIE Catalogues

Naturil Resources Interdires Canada Canada	Natural Resources Resources relaxelles Canada Canada	Anatural Resources Resources naturelles Canada Canada	Nazvril Resources naturities Canada Canada Canada
GEOLOGICAL SURVEY OF CANADA OPEN FILE 8705	GEOLOGICAL SURVEY OF CANADA OPEN FILE 8718	GEOLOGICAL SURVEY OF CANADA OPEN FILE 8831	GEOLOGICAL SURVEY OF CANADA OPEN FILE 8825
A comprehensive earthquake catalogue for southwestern Alberta, between 2004 and 2015	A comprehensive earthquake catalogue for the Fort St. John–Dawson Creek region, British Columbia, 2017–2018	A comprehensive earthquake catalogue for northeastern British Columbia: the northern Montney trend from 2017 to 2020 and the Kiskatinaw seismic monitoring and mitigation	An earthquake catalogue for seismic events in the Norman Wells region of the central Mackenzie Valley, Northwest Territories, using waveform data from local seismic stations
G.D. Huang, H. Kao, and Y.J. Gu		area 110m 2019 to 2020	
2020	R. Visser, H. Kao, B. Smith, C. Goerzen, B. Kontou, R.M.H. Dokht, J. Hutchinson, F. Tan, and A. Babaie Mahani	R. Visser, H. Kao, R.M.H. Dokht, A.B. Mahani, and S. Venables	A.M. Farahbod, H. Kao, and D.B. Snyder
	2020	2021	2021
Canadä	Canadä	Canadă	Canadă

All IIE catalogues are published as Geological Survey of Canada (GSC) Open File Reports, freely available at NRCan's GEOSCAN database (<u>https://geoscan.nrcan.gc.ca</u>). Daily earthquake catalogues are provided to BCOGC for regulatory purposes.

Yu et al. (2021, GRL)

Natural Resources Ressources naturelles Canada Canada

- IIE can occur at deeper or shallower depths depending on local geological/hydrological settings
- From seismic quiescence to surged activity after decades of WD

Revisit the 2015 Fox Creek Earthquake Sequence

Gao et al. (2022, GRL)

(post-injection

- HF started on 2014-12-17, ended on 2015-01-09
- P1 = Dec 17-21, 2014; P2 = Dec 29 2014 Jan 09, 2015
- First IIE occurred ~2 days after P1 was finished, but most events occurred during later days of P2
- East sequence occurred earlier, but located farther from the injection, than the west sequence
- The largest event (Mw 3.9) occurred on 2015-01-23, ~2 weeks after P2 completion
- About one year later, another Mw4.1 event occurred along a neighboring segment to the south

11

Controlling Factors of IIE in Northern Montney

- Extreme Gradient Boosting (XGBoost) machine-learning algorithm
- 6 geological factors and 7 operational factors
- Use Shapley Additive Explanations (SHAP) values to quantitatively interpret the results

Ressources naturelles

Canada

SHAP Values of the Top 6 Factors Controlling IIE in NMP

Controlling Factors of IIE in Southern Montney

- IIE distribution is not always quantitatively correlated with the distribution of injection wells.
- No. of HF wells targeting UM >> those targeting others

Canada

es Ressources naturelles Canada

Wang et al. (2022, EPSL)

* The number within each column indicates the number of eathquake per HF stage

HF wells inside FSJG had more IIE per stage than those in HHL and southern apron

•

HF stages targeting
LMM generated
more IIE than
those targeting
UM, UMM or LM.

Wang et al. (2022, EPSL)

Targeting LMM > Others

17

Conclusions

- Improved methodology and machine-learning algorithms have provided new approaches to study IIE and their source characteristics
- Decade-long wastewater injections can eventually reactivate regional/local fault systems in seismically quiet areas (e.g., the 2018-2019 Musreau Lake sequence)
- IIE can be shallower or deeper than injection depth, depending on the local geological and hydrological settings
- IIE migration can show a complex 3D pattern that is closely linked to the existence of hydraulic conduits and aseismic slip (e.g., the 2015 Fox Creek sequence)
- Different top controlling factors for different regions
- NMP: distance to CFTFB (geological), total injected volume (operational), shut-in pressure (operational), and Montney thickness (geological)
- SMP: Injected volume (operational), number of wells targeting LMM (geological and operational), Montney thickness (geological) and within FSJG (geological)

Questions?

Contact Info:

Honn Kao Geological Survey of Canada, NRCan honn.kao@nrcan-rncan.gc.ca

