Map 1 - Regional Ice Flow Patterns

Map 2. Detailed Ice Flow Patterns

Map 3. Ice Flow History

1. Regional ice flow patterns determined from moraines mapped by Tipper (1971), Clague (1998), Smola-Stevens and Clague (2007) and a local scale map from the study area. The moraines illustrate a general northeast ice-flow direction and represent the confluence of northern and eastern ice divides from the west and south of the study area.

2. Detailed ice flow patterns in NTS map areas 093J, 093K, 093L, 093M and 093N include moraines digitized from aerial photographs, and fabrics and clast fabrics measured in the field. The macroforms represent the dominant sediment transport direction. Relative ice-flow chronologies were determined by measuring multiple clast fabrics at different depths within the same exposure (plotted on map within the same box), truncated ridges, and striations that are formed within glaciers or on ice surfaces.

3. Regional ice flow models for the northern Interior Plateau with data from Stumpff et al. (2000) and this study. Detailed ice flow map created by the red box. (A) Glacier first flowed southeast from the Ominica Mountains (green arrows) until more dominant ice from the west and south (outside of map area) deflected the flow direction to the northeast (yellow and blue arrows, respectively). (B) During the maximum phase, the ice divide shifted west from the Coast Mountains and ice flow maintained a dominantly northeastern direction in the study area. (C) During the late-glacial phase, ice flow was influenced by topography in the higher relief areas (orange arrows) near the margin in the north and west. The final easterly ice flow (red arrows) was the result of diminished influence from ice sourced in the south.