Introduction

The Bowser Basin is a large sedimentary basin (covered above) presented in the study area. It is a result of a large volume of volcanic sediments during Middle Jurassic time. Early Cretaceous time. Approaches range from marine to non-marine sediments, mainly occupied by the Bowser Lake Group. Marine sediments were deposited on the Early Jurassic, in a non-marine carbonate platform. The Bowser Formation is interpreted to be one of high energy, resembling conditions that prevailed during the deposition of the underlying marine sediments. The lithostratigraphic units of the Ashman Ridge Section are also well exposed along the section and provide a complete record of the changes in depositional environment.

Upholithostratigraphic units of the Ashman Ridge Section

The Ashman Ridge Section consists of interbedded arkosic sandstones and associated pyroclastic rocks of the Bowser Group. The presence of highly siderated igneous material, combined with the high energy conditions that prevailed during the deposition of the underlying marine sediments, indicates a volcano-sedimentary environment. The lithostratigraphic units of the Ashman Ridge Section are: Unit A - middle to upper Cretaceous, Unit B - Lower Cretaceous, Unit C - Upper Jurassic, Unit D - Middle Jurassic, Unit E - Lower Jurassic.

Conclusion

Tipper and Richards (1976) interpreted Ashman Ridge as the type section for the Ashman Formation of the Bowser Basin. Based on our observations, we conclude that the mapped Ashman Ridge section along the Ashman Formation. Well exposure and accurate correlation suggest the presence of a significant stratigraphic transition at basin scale. The lithostratigraphic units of the Ashman Formation are well exposed along the section and provide a complete record of the changes in depositional environment.

Acknowledgements

The authors would like to thank Geoscience BC for supporting this research. Additional field costs were supported by Natural Sciences and Engineering Research Council of Canada (NSERC). Discovery Grant 47588 to the second author. Field support was provided by Highfield Helicopters. C.D. Dowling assisted in the field. Munir Saeed and Walker Long provided helpful comments on an earlier version of the manuscript.

References


Thomson, J.W., Anderson and Thorkelson, 1990; Gagnon, 1991; Waldron et al., 2008; Gagnon et al., 2007, we suggested a different subdivision (Fig. 7), which is a clear departure from the Ashman Formation. Well exposure and accurate correlation suggest the presence of a significant stratigraphic transition at basin scale. The lithostratigraphic units of the Ashman Formation are well exposed along the section and provide a complete record of the changes in depositional environment.